Automatic Block-Length Selection for the Dependent Bootstrap

نویسندگان

  • Dimitris N. Politis
  • Halbert White
چکیده

We review the different block bootstrap methods for time series, and present them in a unified framework. We then revisit a recent result of Lahiri (1999b) comparing the different methods and give a corrected bound on their asymptotic relative efficiency; we also introduce a new notion of finite-sample “attainable” relative efficiency. Finally, based on the notion of spectral estimation via the flat-top lag-windows of Politis and Romano (1995), we propose practically useful estimators of the optimal block size for the aforementioned block bootstrap methods. Our estimators are characterized by the fastest possible rate of convergence which is adaptive on the strength of the correlation of the time series as measured by the correlogram.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimum Block Size in Separate Block Bootstrap to Estimate the Variance of Sample Mean for Lattice Data

The statistical analysis of spatial data is usually done under Gaussian assumption for the underlying random field model. When this assumption is not satisfied, block bootstrap methods can be used to analyze spatial data. One of the crucial problems in this setting is specifying the block sizes. In this paper, we present asymptotic optimal block size for separate block bootstrap to estimate the...

متن کامل

Improving Coverage Accuracy of Block Bootstrap Confidence Intervals

The block bootstrap confidence interval based on dependent data can outperform the computationally more convenient normal approximation only with non-trivial Studentization which, in the case of complicated statistics, calls for highly specialist treatment. We propose two different approaches to improving the accuracy of the block bootstrap confidence interval under very general conditions. The...

متن کامل

Consistency of a hybrid block bootstrap for distribution and variance estimation for sample quantiles of weakly dependent sequences

Consistency and optimality of block bootstrap schemes for distribution and variance estimation of smooth functionals of dependent data have been thoroughly investigated by Hall, Horowitz & Jing (1995), among others. However, for nonsmooth functionals, such as quantiles, much less is known. Existing results, due to Sun & Lahiri (2006), regarding strong consistency for distribution and variance e...

متن کامل

Optimal block size for variance estimation by a spatial block bootstrap method

This paper considers the block selection problem for a block bootstrap variance estimator applied to spatial data on a regular grid. We develop precise formulae for the optimal block sizes that minimize the mean squared error of the bootstrap variance estimator. We then describe practical methods for estimating these spatial block sizes and prove the consistency of a block selection method by H...

متن کامل

The Dependent Wild Bootstrap

We propose a new resampling procedure, the dependent wild bootstrap, for stationary time series. As a natural extension of the traditional wild bootstrap to time series setting, the dependent wild bootstrap offers a viable alternative to the existing block-based bootstrap methods, whose properties have been extensively studied over the last two decades. Unlike all of the block-based bootstrap m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003